140 ukufundwa

Ukuhlolwa kwe-Harish Kumar Sriram Inikeza I-AI-Driven Automation Ukuze Ukuhambisa Izimpazamo

nge Jon Stojan Journalist4m2025/05/02
Read on Terminal Reader

Kude kakhulu; Uzofunda

I-Harish Kumar Sriram inikeza isakhiwo se-AI-powered framework ye-digital payments evuselelwa, eyahlanganisa i-neural networks, i-pseudo-labeling enhle, ne-anomaly detection ukuze kuthintela ukuhlangabezana kwebhizinisi ngexesha elifanayo. Ukuhlolwa kwayo kusungula izinhlelo zokufundisa okuzenzakalelayo, okufundisa okuzenzakalelayo okuvimbela ukuhlangabezana, ukunciphisa ukuhlolwa okuzenzakalelayo, kanye nokuvimbela abasebenzisi e-transaction ecosystems ezintsha.
featured image - Ukuhlolwa kwe-Harish Kumar Sriram Inikeza I-AI-Driven Automation Ukuze Ukuhambisa Izimpazamo
Jon Stojan Journalist HackerNoon profile picture
0-item


Ngezinyanga ezidlulile, i-digital financial transactions yakhelwe ngokuvamile futhi ngokushesha kakhulu. Nakuba lokhu kuyinto ukuthuthukiswa okwenziwe kakhulu, isakhiwo se-threats esifundeni zihlanganisa kakhulu. Ukusuka ku-identity steal and payment fraud to synthetic financial crimes and data breaches, ukuphucula ukhuseleko se-transaction kuyinto isikhokelo esikhulu emhlabeni wonke. Ngokuqhathanisa, lezi zimpumelelo ezihlangene zihlanganisa ngokuvamile ngenkathi usebenzisa izinhlelo zokusekelwe nezinsizakalo.


U-Harish Kumar Sriram, umbhali owaziwa kwebhizinisi wokubhalisa, ukuguqulwa kwe-credit risk, ukwelashwa kwe-identity-theft, kanye ne-marketing automation, wabhalisela isakhiwo se-AI esithathwe ukuvikelwa kwezohwebo ngokusebenzisa isitifiketi yayo yokuhlola "I-Generative AI-Driven Automation ku-Integrated Payment Solutions: Transforming Transactions Financial with Neural Network-enabled Insights." Ukusetshenziswa kwebhizinisi asebhizinisi, i-Generative AI, kanye ne-smart pseudo-labeling, isifundo se-automation ekukhuthaza ukuhlukaniswa kwe-fraud, ukhuseleko kwamakhasimende ngamakhasimende e-payment, kanye nok

Transaction Security in the Digital Age

I-transactions ye-financial ibhizinisi ngokushesha okuhambelana ne-scale ye-economy yesikhathi se-digital, ebandayo ku-e-commerce platforms, ama-banks ezivamile, izicelo ze-mobile, kanye ne-fintech startups. Izinzuzo ezinzima zokuphepha zithunyelwe yi-proliferation ye-digital payment interfaces. Lezi zenzakalo zihlanganisa i-transit ye-financial data sensitive. Ukusetshenziswa kwezimpendulo ezincinane kungase kuholele ku-data breaches, ukulondoloza kwezimali amakhulu, nokunciphisa ukuxhaswa kwamakhasimende.


Ngo-research yakhe, uSriram isho ukuthi isikhathi esithathwe izinhlelo ezivamile kanye nezinhlelo ezisekelwe ku-static algorithms kanye nokumelanaI-AI-powered Imodeli ye-SecurityIzinhlelo zokusebenza zokusebenza kwama-context-aware, zokusebenza ngokuvamile, futhi zokusebenza ukufundisa idatha ezintsha. Uyakwazi ukufundisa izinhlelo zokusebenza ukuhlola idatha yabasebenzisi ngokusebenzisa ama-behavioral signals, ukuhlola ama-risk patterns e-milliseconds, kanye nokuvimbela ukusebenza kwezimpendulo ngokuvamile. I-Security akuyona kuphela isigaba esebenzayo emkhakheni wakhe, kodwa iqukethe emkhakheni lokuxhumana ngamunye. Ngakho-ke, ivame ukufundisa kanye nokukhula ngokuvamile kanye nokuguqulwa kwe-market dynamics kanye ne-user behavior.

I-AI-powered Imodeli ye-Security


Ngokuvimbela amamodeli we-AI abakwazi ukuyifaka ama-compliance indicators kanye ne-risk ngokushesha, izakhiwo zingakwazi ukuvikela ukuhlangabezana kwebhizinisi zokusebenza ezingu-complex kanye nokuthuthukiswa kwe-regulatory kanye nokunciphisa isibambiso se-manual kanye ne-audit.

Importance of Generative AI and Neural Networks

I-combination ephakeme ye-neural network architectures kanyegenerative AI techniquesLezi zenzuzo zihlanganisa izifundo ze-Sriram. Lezi zenzuzo zihlanganisa izindlela ezihlangene nezinsizakalo ezivamile ngokusebenzisa ukucubungula ama-volumes amakhulu ze-payment-related data. Ngaphandle kokucubungula nokuhlanganiswa kwebhizinisi, lezi zenzuzo zihlanganisa izibuyekezo ezintsha nge-transaction cycle.

Generative AI ubuchwepheshe


Umklamo we-pseudo-labeling ye-intelligent iyinhlangano olukhulu eyakhiwe ngu-Sriram embhedeni yakhe. Ukusebenzisa idatha eqala e-unlabeled noma e-semi-labeled, kungenziwa ukuqeqesha amamodeli e-AI ebonakalayo. Ngaphezu kwama-transaction amasethi amangqamuzana amangqamuzana amangqamuzana, amamodeli angakwazi ukwandisa ukucindezeleka kwabo ngokuvamile ngokuvumela ama-etiquettes amabili ku-data-points angaziwe futhi ukucindezeleka ngokusebenzisa ukufundiswa kwe-iterative. Lolu hlobo lwezinto ingasiza kakhulu ekubunjweni kwezinto ezingenalutho ezinokuthi zihlanganisa ingozi kodwa akufanele nezakhiwo ezaziwayo


I-Sriram isetshenziselwa i-deep neural networks eyenza ukujabulela i-multidimensional relationships phakathi kwama-data points, ezisetshenziselwa ngemva kokwenza ama-alerts noma ama-approvals e-real-time. Ukuze i-simulate i-high-risk scenarios kanye nokuhlola ukumelana kwekhwalithi ye-synthetic fraud, i-Sriram isetshenziselwa i-generative adversarial networks (GANs). Lezi zibonelelo zihlanganisa ukuqinisa amandla we-AI yokusebenza emkhakheni yomhlaba emangalisayo.

Real-Time Fraud Detection

Ukuhlolwa kwama-fraud yindlela ezivamile zihlanganisa izinjini ezisekelwe nezinsizakalo, izibuyekezo ezimbonini, kanye ne-blacklists. Nakuba lezi zindlela zokusebenza ngokuqondile, zihlanganisa ngokushesha, zihlanganisa, futhi awukwazi ukuxhumana nezinkinga zokusebenza kwezimali ezintsha. Ukuhlolwa kwe-Sriram ibonise imodeli okuzenzakalelayo, emangalisayo kanye nesikhokelo esebenza nge-machine learning kanye ne-real-time data analytics.


I-Fraud Detection Framework ye-Sriram isetshenziselwa uhlelo lwe-hybrid elihlanganisa i-neural networks, i-real-time anomaly detection, kanye ne-fuzzy logic. Ngokuvakashela i-transaction streams ngokuqhubekayo, le nkqubo ibonise ama-patterns ezaziwayo ze-fraud kanye nama-anomali ezivela ezivela ezivamile ezihlangene nezinsizakalo ezivamile.


Enye yezinhlobonhlobo ebalulekile yinkqubo yayo kuyinto umthamo yayo yokuhlola. Ngaphandle kokwenza ukulawulwa okuzenzakalelayo kwezohwebo, it uchofoza ama-cluster zokusebenza phakathi kwezigaba zokuhlanza, ama-time zones, ama-devices, kanye nama-trends ezivamile. Lokhu kuvumela inkqubo ukuhlangabezana phakathi kwe-fraud efanele ne-activity ebonakalayo kodwa ebonakalayo.


Umbhali uqhagamshelane kanjani amamodeli angasetshenziselwa ama-vector of attack nge-simulation of fraudulent transactions using GANs. Ngokufundisa ukujabulela izimo zokusebenza ezingenalutho, njenge-location jumping, i-transaction splitting, kanye ne-identity masking, amamodeli ziye kubaluleke kakhulu ekhuselweni ama-institutions kanye nama-user ngamunye.

Final Thoughts

Ukuhlolwa kwe-Harish Kumar Sriram inikeza ukubukeka kwe-futures ye-intelligent and secure financial transactions eyenziwe nge-generative AI. Nge-focus enhle ku-real-time fraud prevention, ne-neural-network-enabled automation, kanye ne-ethical AI practices, le nophuhliso inokukwazi ukubeka umugqa olutsha yokuthuthukiswa kwe-payment technology.


“I-Generative AI inikeza izinzuzo zokuvimbela, ukuhlaziywa kanye nokuvimbela izinhlelo zokuhweba ngesilinganiso, ngokuvumelana nokuvimbela ukhuseleko kanye nokuvumelana. I-Generative AI inikeza izinzuzo zokuhweba ezisebenzayo, ezikhuthazayo ukuhlangabezana nokuvimbela, futhi zokusebenza ngokushesha ku-compliance yokusebenza kwezimali.”

Trending Topics

blockchaincryptocurrencyhackernoon-top-storyprogrammingsoftware-developmenttechnologystartuphackernoon-booksBitcoinbooks
OSZAR »